# Discovery of Potent HIV-1 Capsid Assembly Inhibitors

**CROI 2010** 

Steve Titolo<sup>1</sup>, Jean-François Mercier<sup>1</sup>, Elizabeth Wardrop<sup>1</sup>, Uta von Schwedler<sup>3</sup>, Nathalie Goudreau<sup>2</sup>, Chris Lemke<sup>2</sup>, Anne-Marie Faucher<sup>2</sup>, Christiane Yoakim<sup>2</sup>, Bruno Simoneau<sup>2</sup>, Wesley I. Sundquist<sup>3</sup>, Stephen Mason<sup>1</sup>

Boehringer Ingelheim (Canada) Ltd. Research & Development, Laval, Québec, Canada:

<sup>1</sup>Departments of Biological Sciences and <sup>2</sup>Chemistry;

<sup>3</sup>Biochemistry Department, University of Utah, Salt Lake City, Utah, U.S.A.

Boehringer

# HIV-1 Capsid Assembly and Maturation





# Capsid Assembly Assay (CAA)



In the context of CA-NC, nucleic acid enhances the formation of capsid-like complexes *in vitro* 



# Capsid Assembly Assay (CAA)





Capsid assembly assay is sensitive to:

- Mutations in both NTD and CTD of CA
- Activity of CAP inhibitors

# High Throughput Screening (HTS) and hit analysis



Several chemically distinct clusters of selective hits (chemotypes) were obtained

- 2 chemotypes were chosen for Lead Optimization based on multiple parameters including:
  - NMR and co-crystallography → inhibitors bound to CA-NTD

 $EC_{50}$ : 70 ± 30nM (n=21)

CC<sub>50</sub>: >28μM

62 ± 23 nM (n=53)

≥20µM

- Resistance selection & Mode-of-Action (MoA) studies were performed
  - MoA was consistent with inhibition of capsid assembly

# Cross-resistance profile



| Target:     |                       | RT              | RT    | RT   | RT    | PR            | PR            | IN              |
|-------------|-----------------------|-----------------|-------|------|-------|---------------|---------------|-----------------|
| Mutation:   | WT                    | Y188L           | V106A | K65R | M184V | V32I<br>/I47V | L33F<br>/I54L | G140S<br>/Q148H |
| Resistance: |                       | NNRTI           | NNRTI | NRTI | NRTI  | PI            | PI            | INSTI           |
| Inhibitor:  | EC <sub>50</sub> (nM) | FC <sup>†</sup> |       |      |       |               |               |                 |
| BI 257(BD)  | 70                    | 1.1             | 0.9   | 0.8  | 0.9   | 1.5           | 0.9           | 1.2             |
| BI 627(BIM) | 284                   | 1.0             | 0.7   | 1.0  | 0.6   | 1.1           | 1.3           | 1.2             |
| BI 720(BIM) | 112                   | 1.2             | 0.9   | 0.7  | 1.0   | 0.7           | 0.6           | 0.8             |
| nevirapine  | 18                    | >83             | 130*  | 0.3  | 0.5   | 1.4           | 1.4           | 1.3             |
| lamivudine  | 89                    | 1.3             | 0.9   | 26.4 | >96   | 0.9           | 1.2           | 1.2             |
| amprenavir  | 35                    | 0.6             | 0.8   | 1.2  | 0.5   | 6.9           | 8.3           | 1.3             |
| raltegravir | 1.5                   | 2.8*            | 0.4   | 1.0  | 0.6   | 0.7           | 1.8           | 227             |

**<sup>†</sup>** FC=fold change from matched WT virus

- Profile is consistent with a MoA that is distinct from NRTI, NNRTI, PI, INSTI
- Additional MoA studies:
  - inhibitors active in late phase of viral replication cycle

<sup>\*</sup> All values are average of n=2 except: V106A with NVP and Y188L with RAL

# Overview of inhibitor binding within CA pocket



#### BD chemotype:



- Phe32 moved out of pocket
- Helix 1 very shifted
- Inhibitor is bound deep within the helical bundle
- His62 moved out of pocket, backbone NH H-bonds to inhibitor

- Same binding site as CAP inhibitors
- Binding pocket not present in apo-crystal



Two chemotypes have distinct binding modes and effects of on CA-NTD

#### BIM chemotype:



- Phe32 moved out of pocket
- Helices 1 and 4 are less shifted
- Inhibitor is bound less deeply than BD series
- Loop and His62 is in more of an apo-like conformation

### Map of resistance mutations



#### Passage of virus in the presence of CAIs $\rightarrow$ mutations in CA



- Resistance mutations within the inhibitor binding pocket mapped to helix 1, 2 and 3
- Substitutions in CA CTD (outside of pocket) were selected with high frequency
- Both single and double amino acid substitutions were obtained

# Summary of resistance mutations



- Cross-resistance against both chemotypes was observed for most mutants
- The majority of mutations selected are rare (non-polymorphic)
- Most capsid assembly inhibitor resistant mutants had reduced replication capacity: From ~3- to >100-fold
- Isothermal titration calorimetry (ITC) studies
  - Some resistance mutations did not affect inhibitor binding (e.g. T58I)
  - These same mutations were found to affect the stability of capsid complexes assembled in vitro

→ Complex resistance profile

# CAIs reduce virus yield or infectivity



Proviral clone used to transfect 293 cells  $\rightarrow$  Inhibitors applied to virus producing cells at 50XEC<sub>50</sub>  $\rightarrow$  analysis performed 48h post-transfection





- BDs greatly reduce virus production
- Virus produced in the presence of BIM chemotype resulted in reduced infectivity

#### EM studies reveal MoA of CAIs





- Different chemotypes have distinct morphological effects
  - → BD causes an immature assembly defect
  - → BIM induces a morphological defect in assembly of capsid cores

| Treatment | % cones | sd  |
|-----------|---------|-----|
| BIM       | 2       | 0.2 |
| BD        | 2       | 1.1 |
| DMSO      | 44      | 8.7 |

# Structural basis for inhibition of capsid assembly



#### BD chemotype:

- displacement of  $\alpha$ 1
- → incompatible with packing of NTD within hexamer

#### **BIM** chemotype:

- potential for contacts with CTD
- → disrupt interaction between NTD and CTD (intermolecular)







Adapted from Pornillos et al. Cell 137, 1282-1292 (2009)

# Summary



- Identified two chemotypes that:
  - Inhibit capsid assembly in vitro
  - Bind to CA-NTD
  - Inhibit viral replication
- Profile consistent with distinct MoA
  - No cross resistance observed with mutations conferring resistance to NNRTI, NRTI, PI, INI
  - Late antiviral effect
  - Resistance mutations map to CA and affect inhibitor binding or assembly function
  - EM studies demonstrated inhibitors had profound effects in virion production and morphology
- Complex resistance genotype/profile obtained with capsid assembly inhibitors
  - Most mutations in highly conserved residues resulting in reduced replication capacity

#### Conclusions



We have demonstrated a proof-of-concept for obtaining potent capsid assembly inhibitors toward discovery of new anti-HIV drugs

- Difference in binding between BD and BIM lead to differential effects on selection of resistance mutations and MoA



Significant effort has been invested by BI on inhibitors of capsid assembly

- Several issues could not be reconciled with potency
  - → Highly lipophilic and flexible binding pocket
  - → Lead optimization was terminated

### HIV Capsid – Acknowledgements



#### Boehringer Ingelheim (Canada)

#### **Biological Sciences**

Jacques Archambault
Soma Banik
Mireille Cartier
Rob Elston
Steve Mason
Robert McCollum
Jean-François Mercier
Steve Titolo
Sonia Tremblay
Elizabeth Wardrop
Paul Whitehead

#### Structural Research

Norman Aubry René Coulombe Pierre Bonneau Nathalie Goudreau Oliver Hucke Chris Lemke

# Chemistry Yves Bousquet

**Patrick DeRoy Martin Duplessis** Lee Fader **Anne-Marie Faucher Alexandre Gagnon Sylvie Goulet Chantal Grande-Maitre** Stephen Kawai Jean-Eric Lacoste **Serge Landry Eric Malenfant** Sébastien Morin Jeff O'Meara **Marc-André Poupart** Jean Rancourt **Bruno Simoneau Simon Surprenant Martin Tremblay Christiane Yoakim** 

#### **University of Utah**

Uta von Schwedler Wes Sundquist