Discovery of GS-9350: A Novel Pharmacoenhancer without Anti-HIV Activity

L Xu,¹ H Liu,¹ BP Murray,² C Callebaut,³ A Hon,¹ R Vivian,¹ MS Lee,² L Tsai,³ K Stray,³ G Eisenberg,² J Chau,² R Strickley,⁴ J Koziara,⁴ Y Choi,¹ C Cannizzaro,⁵ S Swaminathan,⁵ GR Rhodes,² and MC Desai¹

Department of ¹Medicinal Chemistry; ²Drug Metabolism; ³Biology; ⁴Formulation and ⁵Structural Chemistry, Gilead Sciences, Inc., Foster City, CA, USA

Gilead Sciences, Inc.

333 Lakeside Drive Foster City, CA 94404 Tel: (650) 522-5828 Fax: (650) 522-5899

Introduction

- Ritonavir (RTV), an HIV protease inhibitor (PI), is also a potent mechanism-based inhibitor of human CYP3A. It is now mainly used as a pharmacoenhancer to improve pharmacokinetics of coadministered HIV PIs, which are primarily metabolized by CYP3A
- Coadministeration of low dose ritonavir with HIV PIs has reduced pill burden and simplified regimens, and has served as a cornerstone of PI-based
- Ritonavir has been used for over 10 years in HIV-infected patients
- Elvitegravir (EVG, GS-9137), an integrase inhibitor, can be dosed once-daily when boosted with ritonavir
- Ritonavir has limitations when used as a CYP3A inhibitor
- Potent anti-HIV activity, may cause emergence of resistance when used at a low/subtherapeutic dose
- Poor aqueous solubility results in inconvenient dose form
- Requirement for refrigeration and challenging for co-formulation
- Associated with lipid disorders and GI-side effects
- Induction liability for off-target drug interactions (CYP, Pgp, UGT) CYP inhibitors that can overcome these limitations were designed
- The discovery, structure-activity relationships (SAR), pharmacokinetic profile, and synthesis of a novel series of CYP3A inhibitors are presented in this poster

Methods

HIV protease enzyme inhibition and cell inhibition assay

- Inhibition of HIV protease was evaluated using synthetic fluorescent substrates previously described. Standard viability assays were used to determine antiretroviral activity in MT-2 cells infected for 5 days with HIV-1 IIIB **CYP inhibition Assays**
- IC₅₀ values for inhibition of human hepatic microsomal CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities were generated using industry and FDA recommended methods. CYP3A inhibition data described were
- generated using midazolam as the probe substrate CYP3A inactivation kinetic parameters were generated using a two-step protocol with pooled human hepatic microsomal fractions and midazolam as the probe substrate

PXR Activation Assay

 Human PXR activation was determined by transactivation analysis in cell lines containing a construct with the CYP3A4 promoter fused to a firefly luciferase reporter gene

Pharmacokinetics

 GS-9350 or RTV were dosed orally as solutions to Sprague Dawley rats and intact or portal vein cannulated beagle dogs. Plasma samples were analyzed using specific LC-MS/MS methods

 Effect on lipid accumulation and insulin-stimulated glucose uptake was assessed in human adipocytes (Cambrex) and mouse OP9 adipocytes (ATCC), respectively

Results and Discussion

Desoxy-Ritonavir

- $EC_{50}(nM)$ $IC_{50}(\mu M)$ $IC_{50}(\mu M)$ $IC_{50}(\mu M)$ activation% 0.11 4.9 2.3 0.11 3.9 3.9 70 2 Desoxy-RTV 290
- Desoxy-RTV has reduced anti-HIV activity
- Comparable CYP3A activity and selectivity
- Desoxy-RTV served as the lead compound for SAR studies

Synthetic Methods

Synthesis of Core Diamine

Synthesis of Analogs

SAR Results

SAR of P3 Region

Compound	$R_{2^{\scriptscriptstyle{\setminus}}N^{\scriptscriptstyle{\circ}}\!\check{N}^{\scriptscriptstyle{\circ}}}$	HIV replicat	CYP 3A4	
Compound	$\overset{\ }{R_{3}}$	Protease	Replication	IC ₅₀ (μΜ)
1	Ritonavir	0.0006	0.015	0.11
2	N N N N N N N N N N N N N N N N N N N	0.005	0.29	0.11
3	N N N N N N N N N N N N N N N N N N N	0.035	0.40	0.10
4	N S	0.386	0.7	0.08
5	N N N N N N N N N N N N N N N N N N N	0.550	0.75	0.21

Modifications to P3 region still allow potent CYP3A inhibition Removal of isopropyl moiety from thiazole or incorporation of bulky substitutents at urea N did not significantly reduce anti-HIV activity

SAR Results (cont'd)

SAR of P2 Region

CYP3A4

- P2 groups modulate anti-HIV activity Compound 10, 12, 14 and GS-9350 are potent CYP3A inhibitors, while
- **CYP450 Enzyme Inhibition Specificity**

having no activity against HIV

Compound	CYP450 Enzyme IC ₅₀ (μM)				PXR	
	3A	1A2	2C19	2C9	2D6	activation %
Ritonavir	0.11	>25	12.7	4.9	2.3	51
10	0.11	>25	2.2	4.7	0.6	15
12	0.21	>25	>25	>25	0.8	5
GS-9350	0.15	>25	>25	>25	9.2	10
14	0.09	>25	1.27	8.1	3.1	32
00.00=0.1						

GS-9350 is a more specific CYP3A inhibitor, has minimal effects on PXR and was selected for further evaluation

Key Profiles of GS-9350

GS-9350 is a Mechanism-based Inhibitor of CYP3A

Results and Discussion (cont'd)

▲ GS-9350 - 300 nM Preincubation time (min) Inhibition of CYP3A by GS-9350 is both time- and concentration-

GS-9350 inhibits the metabolism of a broad range of **CYP3A** substrates

GS-9350 shows reduced potential for lipid abnormalities

	Adipocyte Function Assays			
Compound	Inhibition of Normal Lipid Accumulation (EC ₅₀ μM)	% Inhibition of Glucose Uptake @ 10μΜ		
Ritonavir	16	55		
GS-9350	> 30	9.5		
Atazanavir	> 30	1.1		
		mean of 5 experimen		

 GS-9350 exhibits minimal induction of drug metabolizing enzymes and transporters

- GS-9350 shows good in vitro DMPK profile, improved aqueous solubility
- GS-9350 has comparable DMPK profile to ritonavir with high absorption potential after oral dosing

Compound	Aqueous solubility (µg/mL)		Log	Caco-2 Papp (x10 ⁻⁶ cm/s)		Portal vein absorption
	pH 7.4	pH 2.2	D	A to B	B to A	in dog
Ritonavir	~2.0	3.1	3.3	6.3 (5 µM)	27.1 (5 μM)	>50%
GS-9350	75	>6500	3.1	2.4 (1 μM) 7.6 (10 μM)	22.7 (1 μM) 8.5 (10 μM)	>50%

Integrase Fixed-Dose Combination Tablet (QUAD)

Integrase Fixed-dose Regimen (Elvitegravir/ Emtricitabine/ Tenofovir DF/ GS-9350)

- GS-9350 was successfully co-formulated with elvitegravir/ emtricitabine/tenofovir as a single tablet (QUAD)
- QUAD is smaller in size than ATRIPLA™

Clinical Studies

- In phase I, at 100 and 200 mg, once daily GS-9350 reduced the clearance of midazolam (a CYP3A substrate) by 90% and 95%, respectively
- In phase I, GS-9350 (150 mg, once daily), when used as a component of integrase fixed-dose regimen QUAD, enhanced the PK of elvitegravir to
- provide comparable C_{trough} to that boosted with 100 mg once daily ritonavir
 In phase I, GS-9350 (150 mg, once daily) enhanced the PK of atazanavir
- bioequivalent to that obtained when coadministered with 100 mg once daily ritonavir (see Poster A1-1301)
- GS-9350 is being evaluated in Phase II studies in HIV-infected patients

Conclusions

- GS-9350 is a potent, selective, mechanism-based CYP3A inhibitor that lacks anti-HIV activity and has limited effects on adipocyte function in vitro
- GS-9350 has reduced potentials than ritonavir for off-target drug-interactions due to enzyme inhibition or induction
- GS-9350 shows much improved physicochemical properties over ritonavir, allowing tablet co-formulations with other agents
- GS-9350 boosts CYP3A substrates comparable to ritonavir in humans
- Single pill, once daily integrase fixed-dose regimen (Elvitegravir/Emtricitabine/Tenofovir DF/GS-9350) is in Phase II study in HIV-infected patients

References

- 1. Busse KH, et al: Pharmacological enhancement of protease inhibitor with ritonavir: An update. Expert Rev Clin Pharmacol (2008) 533-545.
- 2. Ernest CS 2nd, et al: Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J Pharmacol Exp Ther (2005) 312, 583. 3. Obach RS, et al: Mechanism-based inactivation of human cytochrome P450
- enzymes and the prediction of drug-drug interactions. Drug Metab Dispos (2007) 35, 4. Luo G, et al: Cocurrent induction and mechanism-based inactivation of CYP3A4 by
- an L-valinamide derivative. Drug Metab Dispos (2003) 31, 1170. Mathias A, et al: GS-9350: A phamacoenhancer without anti-HIV activity. CROI
- Endocrinol Metab (1999) 84, 4274.
- Murata H, et al: The mechanism of insulin resistance caused by HIV protease inhibitor therapy. JBC (2000) 275, 20251.
- 3. Xu L and Desai MC: Pharmacokinetic enhancers for HIV drugs. Curr Opinion in Invest Drugs (2009) 10, 775.

Acknowledgements

- Yujin Wang, Chris Yang, Leah Tong, Quynh Iwata and Bill Lee
- Roy Bannister, Steve Chuck, Polina German, Brian Kearney, Anita Mathias,
- Srini Ramanathan, David Warren, Kitty Yale and Andrew Cheng