for the Study of Liver Diseases

October 30 - November 3, 2009

Boston, Massachusetts, USA

480

Resistance Surveillance for up to 144 Weeks in HBeAg+ and HBeAg- Hepatitis B Patients Treated with Tenofovir DF Showed No Relationship Between Virologic Breakthrough and Emergence of Genotypic Changes in HBV Polymerase

A Snow-Lampart,¹ B Chappell,¹ M Curtis,¹ Y Zhu,¹ J Heathcote,² P Marcellin,³ and K Borroto-Esoda¹

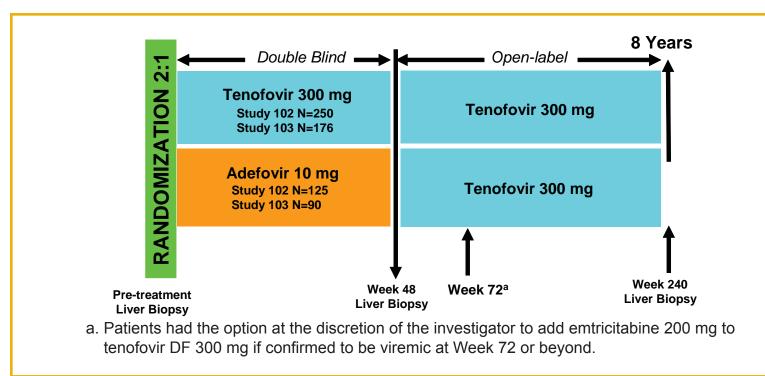
Gilead Sciences, Inc. 333 Lakeside Drive Foster City, CA 94404 Tel: (650)574-3000 Fax: (650)578-9264

GILEAD

¹Gilead Sciences, NC, USA; ²Toronto General Hospital, Ontario, Canada; ³Hospital Beaujon, Clichy, France

Introduction

60th Annual Meeting of the American Association

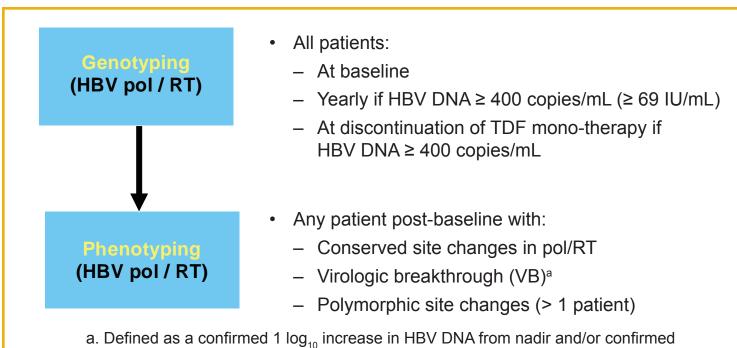

- Tenofovir disoproxil fumarate (tenofovir DF, TDF) is a nucleotide analog with potent antiviral activity in patients mono-infected with HBV and co-infected with HIV-1 and HBV
- HBV pol/RT resistance mutations have been identified following administration of other oral anti-HBV agents (lamivudine, adefovir dipivoxil, entecavir, and telbivudine)
- No amino acid substitutions associated with resistance to tenofovir DF were detected in the HBV pol/RT during the first 96 weeks of TDF treatment of HBeAg- and HBeAg+ patients in Studies 102 and 1031

Objectives

- To identify amino acid substitutions in the HBV pol/RT following up to 144 weeks of therapy with TDF 300 mg once daily
- To evaluate the effects of these substitutions on the clinical response to TDF monotherapy in chronic hepatitis B
- To determine whether these substitutions alter susceptibility to tenofovir using *in vitro* HBV replication assays and to evaluate the cross-resistance profile of these substitutions

Methods

Figure 1. Design of HBeAg- Study 102 and HBeAg+ Study 103 of TDF in Chronic Hepatitis B Patients


- Patients were enrolled in one of two double-blind, randomized studies of TDF [Study 102
- Genotypic analysis by population di-deoxy sequencing of serum HBV pol/RT
- Covers AA 1-344 of pol/RT (AA 1-266 of HBsAg)

(HBeAg-) or Study 103 (HBeAg+)]

- Able to detect AA substitutions present at ≥ 25% of viral quasi-species population
- Phenotypic analyses were conducted in HepG2 cells transiently transfected with:
- A pool of recombinant HBV plasmid DNA derived from patient serum HBV pol/RT or
 Mutant virus created by site directed mutagenesis in the pCMVHBV (genetype D) or
- Mutant virus created by site-directed mutagenesis in the pCMVHBV (genotype D) or pHY92 (genotype A) backbone
- Plasma HBV DNA levels were determined by Roche COBAS TaqMan assay (LLOQ = 169 copies/mL; 29 IU/mL)

Figure 2. Virology Analysis Plan for Studies 102 and 103

HBV DNA >400 copies/mL after having <400 copies/mL

Table 1. HBeAg⁻ and HBeAg⁺ Patients Evaluated During Year 3 Figure 5. Genotypic Changes ir

	TDF-TDF Group	ADV-TDF Group
	TDF-TDF Group	ADV-TDF Group
Patients entering Year 3	364/426 (85%)	192/215 (89%)
Patients with HBV DNA >400 copies/mL	13/364 (4%)	9/192 (5%)
Patients on TDF monotherapy	6	5
	(4 HBeAg-, 2 HBeAg+)	(all HBeAg+)
Patients with VB	1	2
Deticate on ETC/TDE combination the security	7	4
Patients on FTC/TDF combination therapy	(all HBeAg+)	(all HBeAg+)
Patients with VB	3	1

VB = Virologic Breakthrough defined as a confirmed 1 log_{10} increase in HBV DNA from nadir or confirmed HBV DNA >400 copies/mL after having been <400 copies/mL

Figure 3. Genotypic Changes in HBeAg⁻ and HBeAg⁺ TDF-TDF Treated Patients During Year 3

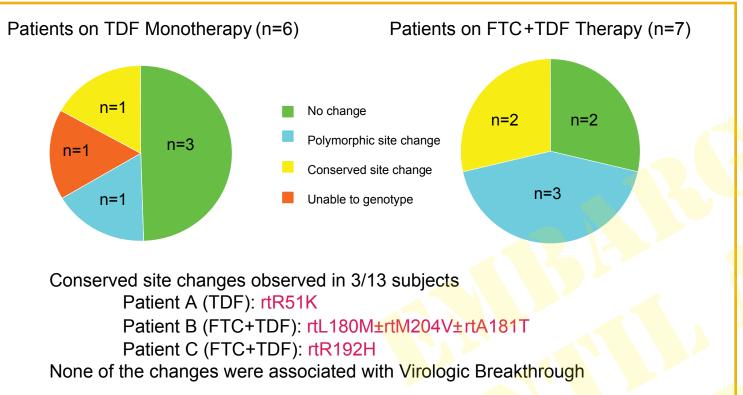


Figure 4. HBV DNA Profile for the TDF-TDF Treated Patients with Conserved Site Changes

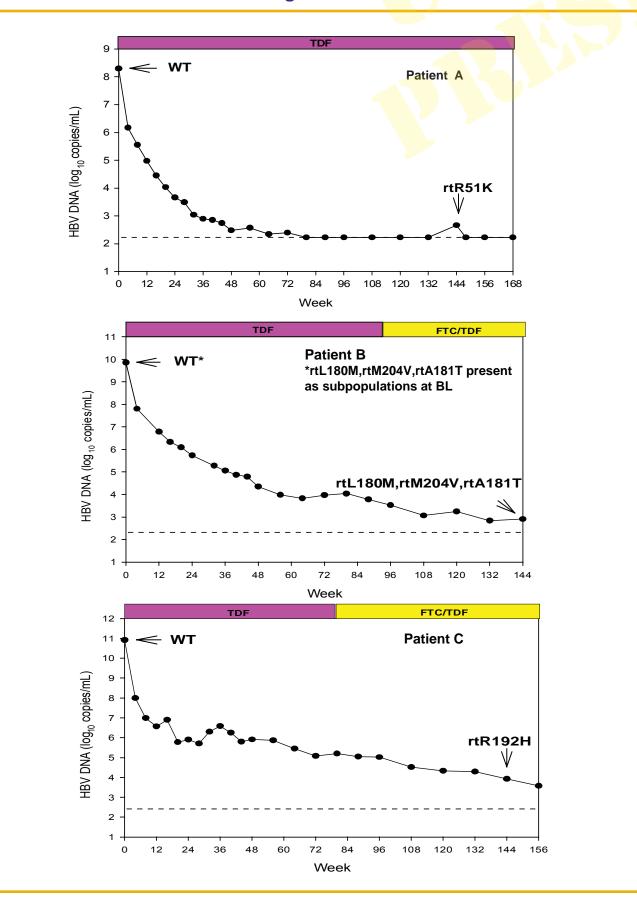


Figure 5. Genotypic Changes in HBeAg⁻ and HBeAg⁺ ADV-TDF Treated Patients
During Year 3

Results

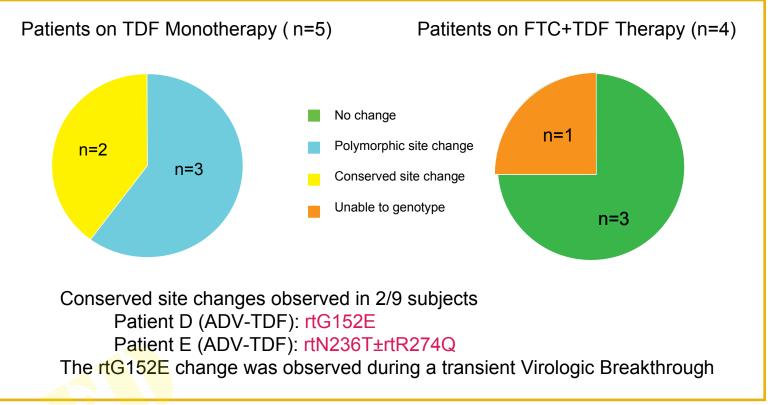
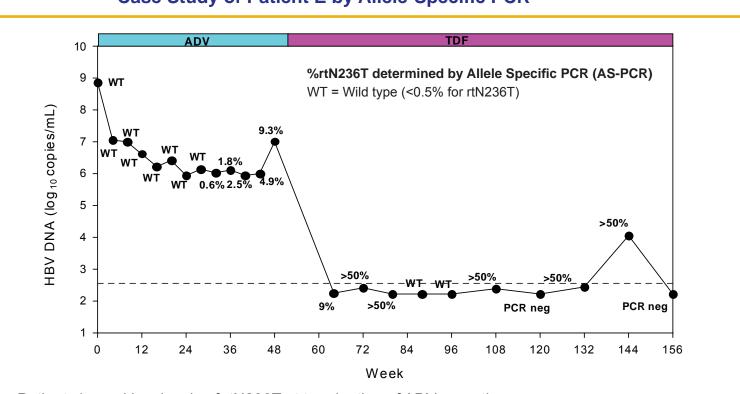
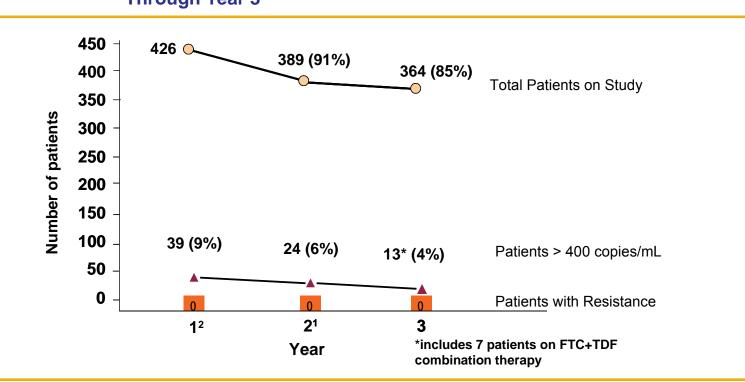



Figure 6. HBV DNA Profile for the ADV-TDF Treated Patients with Conserved Site Changes

Figure 7. Evolution of Low Levels of rtN236T on ADV-TDF Therapy:
Case Study of Patient E by Allele-Specific PCR

Patient showed low-levels of rtN236T at termination of ADV monotherapy
 Switch to TDF monotherapy resulted in a 3.8 log₁₀ decrease in the rtN236N/T viral population to below detection limits of HBV DNA PCR assay at most visits

Table 2. Development of Conserved Site Changes in HBV pol/RT did not Impact Phenotypic Sensitivity to Tenofovir *in vitro*


did not Impact Phenotypic Sensitivity to Tenofovir <i>in vitro</i>				
Treatment Group	Viral Isolate	Change from BL in HBV pol/RT	Fold Change from BL ^a	
TDF	Patient A			
	Week 144_pool	rtR51K	1.4	
TDF-FTC/TDF	Patient B			
	Week144_pool ^b	rtA181T⁵	0.7	
TDF-FTC/TDF	Patient C			
	Week 144_pool/clones ^c	rtR192H	Replication Defective	
ADV-TDF	Patient E			
	Week 144_pool	rtN236N/T±rtR274R/Q	1.9	
	Week 144_clone 1	rtN236T	8.2	
	Week 144_clone 2	rtR274Q	1.9	
Treatment Group	Laboratory Isolate	Change from control in HBV pol/RT	Fold Change from control	
TDF-FTC/TDF	pCMVHBV			
	rtR192H	rtR192H	Replication Defective	
ADV-TDF	pHY92			
	rtG152E	rtG152E⁴	1.8	

- a. Values ≤ 2-fold are not statistically significant
- b. Constructs containing the rtL180M+rtM204V were not obtained in clonal analysis for phenotypic evaluation
- c. Seven clones containing the rtR192H were also tested, all were replication defective (i.e. did not grow in cell culture) d. Site-directed recombinant expressing rtG152E created for patient D as patient serum failed to generate a
- phenotyping vector

Results Summary

- Conserved site changes in HBV pol/RT observed in 5 of 556 patients across both arms of Studies 102 and 103 during Year 3
- Not associated with persistent virologic breakthrough
- Not associated with altered susceptibility to tenofovir in vitro
- Polymorphic site changes observed in 7 patients
- Represent natural polymorphic changes as observed historically among placebo-treated patients
- The presence of these substitutions at baseline did not impact clinical response to TDF
- Virologic breakthrough observed in 7 patients
- Associated with non-adherence in the majority of cases
 Not associated with *in vitro* resistance to tenofovir (data not shown)

Figure 8. Summary of Resistance Analyses of TDF-Treated Patients
Through Year 3

Conclusions

- No resistance to TDF developed following up to 3 years of TDF monotherapy in 364 patients
- Similar data observed among the 20 patients who added FTC
 No resistance to TDF developed among 192 ADV treated patients
- following up to 2 years of TDF monotherapySimilar data observed among the 14 patients who added FTC
- Patient retention remained high, 86.7% (556/641) across both arms of Studies 102 and 103

References & Acknowledgements

- 1. Snow-Lampart et. al. AASLD 2008, Poster #977
- 2. Snow-Lampart et. al. EASL Monothematic conference on Hepatitis B and C Virus Resistance to Antiviral Therapy 2008, Poster #4

 Jeff Sorbel Biostatistics department GSI; Members of the Bioanalytical department GSI