In Vitro Tenofovir Sensitivity of HBV Populations from Clinical Specimens Containing rtA181T/V and/or rtN236T

60th Annual Meeting of the American Association for the Study of Liver Diseases October 30 - November 3, 2009 Boston, Massachusetts, USA

K Kitrinos¹, F Myrick¹, M Curtis¹, J Schawalder¹, Y Zhu¹, F Zoulim², K Borroto-Esoda¹

¹Gilead Sciences, Inc., Durham, NC, USA; ²INSERM, Lyon, France

GILEAD Gilead Sciences, Inc. 333 Lakeside Drive Foster City, CA 94404 Tel: (919) 493-5980 Fax: (919) 493-5925

Introduction

- Tenofovir disoproxil fumarate (TDF) is approved for the treatment of HIV-1 and HBV infections, however the resistance profile in HBV has not been determined¹
- Currently no evidence of clinically significant HBV mutation(s)
- The rtA181V and rtN236T adefovir-associated resistance mutations (ADV-R) exhibit some cross resistance to tenofovir (TFV) *in vitro*^{2,3}
- The clinical significance of these mutations on TDF efficacy is unknown
- There are limited data to determine how changes in TFV in vitro EC₅₀ (50% effective concentration) values will impact TDF clinical efficacy

Objectives

- · To determine the impact of ADV-R mutations on tenofovir susceptibility in vitro
- To evaluate the potential correlation between changes in tenofovir susceptibility in vitro and clinical response

Methods

- Twenty-six clinical isolates obtained from 24 ADV-treated patients enrolled in GS-US-174-0103 (n=5) and GS-US-174-0106 (n=19) were analyzed
- All ADV-R patients (detected by population sequencing) with replication competent virus that were treated with TDF in GS-US-174-0106 were included
- Population di-deoxy sequencing of serum HBV pol/RT (LOD 400 copies/mL) was performed on all 26 isolates
- Covers amino acids (AA) 1-344 of HBV RT
- Detects mutations ≥25% of the population
- 20 isolates were further analyzed using the INNO-LiPA HBV DR V3 assay
- Detects mutations at rtL80, rtV173, rtL180, rtA181, rtT184, rtA194, rtS202, rtM204, rtI233, rtN236, and rtL250 of HBV RT
- Detects mutations ≥5% of the population
- Phenotypic analysis of patient-derived HBV DNA (pools and clones) was conducted in HepG2 cells transiently transfected with a pool of recombinant HBV plasmid DNA derived from patient serum HBV⁴
- PCR product containing entire HBV RT (AA 1-344) is cloned into plasmid vector expressing genotype A laboratory strain lacking corresponding RT region for transfection into HepG2 cells followed by drug treatment for 7 days
- EC₅₀ values were determined by qPCR analysis of intracellular HBV DNA; fold change values ≤ 2 are not significant
 Patients 1003, 2003, and 1022 were selected for clonal analysis due to a high percentage of mutant subpopulations
- HBV DNA levels determined by the Roche COBAS TaqMan 48 HBV assay (lower limit of quantitation is 169 copies/mL)

Results

 Table 1.
 Isolate Characteristics and Sequence Results

Isolate	HBV DNA (log ₁₀ copies/mL)	Genotype	Prior ADV Exposure (Days)	Population Sequencing ^a	INNO LiPA Sequencing ^a
2013	3.41 (BL)	А	289	WT	WT
1401	9.77 (w48)	А	335	WT	Not Done
7852-1	10.28 (w48)	А	336	WT	Not Done
3006	7.12 (BL)	В	240	WT	WT
1041	5.80 (BL)	С	266	WT	WT
3025	6.43 (BL)	С	307	WT	WT
3027	6.48 (BL)	С	520	WT	WT
3030	7.36 (BL)	С	653	WT	WT
3015	6.57 (BL)	С	686	WT	WT
3960	10.11 (w48)	D	349	WT	Not Done
2952	6.12 (w48)	D	336	WT	Not Done
7952	9.74 (w48)	D	336	WT	Not Done
2012	5.63 (BL)	D	393	WT	WT
3018	7.57 (BL)	D	602	WT	WT
1002	8.83 (BL)	Е	238	WT	WT
1024	9.21 (BL)	E	725	WT	WT
3003⁵	5.55 (BL)	А	541	WT	rtA181A/T
1039⁵	5.35 (BL)	D	140	WT	rtA181A/T
4011-1 ^b	6.63 (BL)	D	574	WT	rtN236N/T
1017 ^b	7.75 (BL)	D	838	WT	rtA181A/T
7852-2	3.18 (w96)	А	336	rtN236N/T	Not Done
1003 ^b	6.65 (BL)	В	517	rtN236N/T	rtN236N/T
1022 ^b	5.30 (BL)	С	580	rtA181A/T	rtA181A/T, rtN236N/T
2003 ^b	6.12 (BL)	D	489	rtA181V/A, rtN236N/T	rtA181A/V, rtN236N/T
4011-2	2.82 (w48)	D	574	rtN236T	WT
4010 ^b	6.14 (BL)	D	695	rtN236N/T	rtA181A/T/V, rtN236N/T

ole 2A. TFV EC₅₀ Values for Isolates without ADV-R Mutations

Isolate	Mean TFV EC ₅₀ (μM) ± SD ^a	Fold Change from pHY92	
2013	16.6 ± 3.3	1.0	
1401	12.8 ± 1.2	0.8	
7852-1	11.4 ± 2.1	0.7	
3006	13 ± 1.5	0.8	
1041	14.4 ± 1.8	0.9	
3025	10.2 ± 4.0	0.6	
3027	10.8 ± 2.9	0.7	
3030	16.3 ± 3.5	1.0	
3015	10.1 ± 0.7	0.6	
3960	11.2 ± 4.2	0.7	
2952	12.3 ± 2.7	0.8	
7952	7.8 ± 1.1	0.5	
2012	19.5 ± 7.1	1.2	
3018	14.4 ± 3.6	0.9	
1002	12.2 ± 6.5	0.7	
1024	7.0 ± 3.0	0.4	
pHY92 ^b	16.3 ± 3.8	1.0	
ADV-R⁵	47.9 ± 12.4	2.9	

a. Values represent average of 3-4 independent assays for isolates
 b. pHY92 and ADV-R are genotype A laboratory strains used as controls

Table 2B. TFV EC₅₀ Values for Isolates with ADV-R Mutations

Isolate	ADV-R Mutations ^a	Mean TFV EC ₅₀ (μ <mark>M) ±</mark> SD ^b	Fold Change from pHY92
3003	rtA181A/T	12.6 ± 2.9	0.8
1039	rtA181A/T	8.8 ± 4.0	0.5
4011-1	rtN236N/T	9.3 ± 3.8	0.6
1017	rtA181A/T	20.6 ± 4.3	1.3
7852-2	rtN236N/T	15.3 ± 1.8	0.9
1003	rtN236N/T	14.4 ± 4.0	0.9
1022	rtA181A/T, rtN236N/T	21.4 ± 4.1	1.3
2003	rtA181V/A, rtN236N/T	44.6 ± 22.6	2.7
4011-2	rtN236T	12.2 ± 8.1	0.7
4010	rtA181A/T/V, rtN236N/T	24.6 ± 2.9	1.5
pHY92°	WT	16.3 ± 3.8	1.0
ADV-R°	rtA181V, rtN236T	47.9 ± 12.4	2.9

- a. Mutations detected in either INNO-LiPA or population sequencing b. Values represent average of 3-4 independent assays for isolates
- c. pHY92 and ADV-R are genotype A laboratory strains used as controls

Figure 1. HBV DNA Change from Baseline for TDF-Treated Patients with and without ADV-R
Through 24 Weeks

Table 3. TFV EC., Values for Clones From Patients 2003, 1003, and 1022

Detient	ADV D Mutations	Macon TEV/ EC. (v.M) + CDb	
14510 0.	50 Values for Stories From Fa	1000, and 1022	

Patient	ADV-R Mutations ^a	Mean TFV EC ₅₀ (μM) ± SD ^b	Fold Change from pHY92
2003_pool ^c	rtA181V/A, rtN236N/T	44.6 ± 22.6	2.7
2003_clone 2	rtA181V, rtN236T	49.3 ± 5.5	3.0
2003_clone 9	rtN236T	>200	>12.3
2003_clone 10	rtA181V	57.9 ± 22.2	3.6
2003_clone 13	WT	21.8 ± 7.7	1.3
1003_poold	rtN236N/T	14.4 ± 4.0	0.9
1003_clone 2	WT	11.4 ± 1.9	0.7
1003_clone 10	rtN236T	>200	>12.3
1022_pool ^e	rtA181A/T	21.4 ± 4.1	1.3
1022_clone 8	WT	12.8 ± 0.8	0.8
1022_clone 9	rtA181T	12.0 ± 2.8	0.7

- a. Mutations detected in either INNO-LiPA or population sequencing
- b. Values represent average of 2-4 independent assays
- c. Mutant percentages: rtA181V = 17%, rtN236T = 33%, rtA181V+rtN236T = 42%
- d. Mutant percentage: rtN236T = 56%e. Mutant percentage: rtA181T = 38%
- Figure 2. HBV DNA Levels for TDF-Treated Patients 1003, 2003, and 1022 Through 24 Weeks

- 25/26 isolates had mean TFV EC₅₀ values that fell within the 2-fold assay variability; 1 isolate (with rtA181V + rtN236T mutations in > 90% of the population) demonstrated 2.7-fold reduced susceptibility to TFV (Tables 2A-B)
- No significant differences observed for mean EC_{50} (p = 0.140) and fold change (p = 0.133) when comparing RT pools from isolates with and without rtA181T/V and/or rtN236T (Tables 2A-B)
- The reduction in HBV DNA over the first 24 weeks of treatment with TDF was similar between patients with and without ADV-R (Figure 1)
- Phenotypic analysis of clones with and without ADV-R from three patients showed reduced TFV susceptibility *in vitro* for rtA181V and rtN236T, but not rtA181T (Table 3)
- All three patients had HBV DNA levels of <400 copies/mL by Week 24 (Figure 2)

Conclusions

- The presence of HBV mutant subpopulations (≤ 50%) of rtA181T/V and/or rtN236T did not have an impact on TFV susceptibility in *in vitro* phenotyping assays
- Wild-type virus in these samples likely contributes to this result
- The presence of subpopulations of ADV-R HBV, including one patient with >90% mutant virus, did not have an impact on clinical response to TDF through 24 weeks of treatment

References & Acknowledgements

- 1. Snow-Lampart et al. 2009. AASLD, Poster 480
- 2. Delaney et al. 2006. AAC. 50: 2471-2477
- 3. Qi et al. 2007. Antiviral Therapy. 12: 355-3624. Zhu et al. 2008. The Molecular Biology of Hepatitis B Viruses, Poster 127
- The authors would like to thank Jeff Sorbel, Gilead Sciences, for his statistical assistance

a. Results for ADV-R mutations onlyb. ADV-R patients included in Figure 1 analysis

Results (cont'd)