Poster #1869

# Hematologic Safety Data From the IDEAL Trial: Neutropenia, Anemia, and Thrombocytopenia Profiles of Peginterferon alfa/Ribavirin

Fred Poordad,¹ Norbert Brau,² Eric J. Lawitz,³ Mitchell L. Shiffman,⁴ John G. McHutchison,⁵ Andrew J. Muir,⁵ Greg Wayne Galler,⁶ Jonathan McCone,⁵ Lisa Marie Nyberg,⁵ William M. Lee,⁶ Reem H. Ghalib,¹⁰ Eugene R. Schiff,¹¹ Joseph S. Galati,¹² Bruce R. Bacon,¹³ Mitchell Davis,¹⁴ Steven K. Herrine,¹⁵ Alexandra L. Gibas,¹⁶ Bradley Freilich,¹⁷ loseph S. Galati,¹² Bruce R. Bacon,¹³ Mitchell Davis,¹⁴ Steven K. Herrine,¹⁵ Alexandra L. Gibas,¹⁶ Bradley Freilich,¹⁷ loseph S. Galati,¹² Bruce R. Bacon,¹³ Mitchell Davis,¹⁴ Steven K. Herrine,¹⁵ Alexandra L. Gibas,¹⁶ Bradley Freilich,¹⁷ loseph S. Galati,¹² Bruce R. Bacon,¹³ Mitchell Davis,¹⁴ Steven K. Herrine,¹⁵ Alexandra L. Gibas,¹⁶ Bradley Freilich,¹⁷ loseph S. Galati,¹² Bruce R. Bacon,¹³ Mitchell Davis,¹⁴ Steven K. Herrine,¹⁵ Alexandra L. Gibas,¹⁶ Bradley Freilich,¹⁷ loseph S. Galati,¹² Bruce R. Bacon,¹³ Mitchell Davis,¹⊸ Steven K. Herrine,¹⊸ Alexandra L. Gibas,¹⁶ Bradley Freilich,¹⁷ loseph S. Galati,¹² Bruce R. Bacon,¹³ Mitchell Davis,¹⊸ Norbert Brau,² Eric J. Lawitz,³ Mitchell L. Shiffman,⁴ John G. McHutchison,⁵ Andrew J. Muir,⁵ Greg Wayne Galler,⁶ John G. McHutchison,⁵ Andrew J. Muir,⁵ Greg Wayne Galler,⁶ John G. McHutchison,⁵ Andrew J. Muir,⁵ Greg Wayne Galler,⁶ John G. McHutchison,⁵ Andrew J. Muir,⁵ Greg Wayne Galler,⁶ John G. McHutchison,⁵ Andrew J. Muir,⁵ Greg Wayne Galler,⁶ John G. McHutchison,⁵ Andrew J. Muir,⁵ Greg Wayne Galler,⁶ John G. McHutchison,⁵ Andrew J. Muir,⁵ Greg Wayne Galler,⁶ John G. McHutchison,⁵ Andrew J. Muir,⁵ Greg Wayne Galler,⁶ John G. McHutchison,⁶ John G. McHutchison,  John G. McHutchison,  John G. McHutchison,  John W. King,<sup>18</sup> Lorenzo Rossaro,<sup>19</sup> Pabak Mukhopadhyay,<sup>20</sup> Stephanie Noviello,<sup>20</sup> Clifford A. Brass,<sup>20</sup> Janice K. Albrecht,<sup>20</sup> and Mark S. Sulkowski<sup>21</sup> on Behalf of the IDEAL Study Team

<sup>7</sup>Mt. Vernon Endoscopy Center, Alexandria, VA, USA; <sup>8</sup>Kaiser Permanente, San Diego Medical Center at Dallas, TX, USA; <sup>11</sup>University of Miami Center for Liver Diseases, Miami, FL, USA; <sup>18</sup>Horitan Diego, CA, USA; <sup>19</sup>University of Medical Center at Dallas, TX, USA; <sup>19</sup>University of Miami Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center at Dallas, TX, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, FL, USA; <sup>19</sup>University of Medical Center for Liver Diseases, Miami, M <sup>12</sup>Liver Specialists of Texas, Houston, TX, USA; <sup>15</sup>Thomas Jefferson University, St. Louis, MO, USA; <sup>16</sup>Regional Gastroenterology, P.A., Wellington, FL, USA; <sup>18</sup>Saint Louis University, Philadelphia, PA, USA; <sup>18</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>18</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>18</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>18</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>18</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>18</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>18</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>18</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, P.A., Wellington, FL, USA; <sup>19</sup>Couth Florida Center of Gastroenterology, P.A., Wellington, P.A., Welling

<sup>17</sup>Kansas City Gastroenterology & Hepatology, LLC, Kansas City, MO, USA; <sup>18</sup>Louisiana State University of California Davis Medical Center, Sacramento, CA, USA; <sup>20</sup>Schering-Plough Research Institute, Kenilworth, NJ, USA; <sup>21</sup>Johns Hopkins University School of Medicine, Baltimore, MD, USA

# Abstract

Background: The IDEAL trial compared 3 treatment regimens of peginterferon alfa plus ribavirin (RBV) in naive genotype 1 patients. Hematologic profiles are described.

Methods: 3070 patients were treated for 48 weeks with ribavirin 800-1400 mg/d plus PEG2b 1.5 µg/kg/wk (PEG1.5/RBV) discontinuation (DC) was required for Hgb <10 and 8.5 g/dL, neutrophil count (neut) <0.75 and  $0.50 \times 10^9$ /L, or platelet count (plt) <50 and 25 × 10<sup>9</sup>/L, respectively. Subsequent to required RBV DR, erythropoietin was allowed, and there were no differences in usage among arms.

Results: Baseline blood counts were similar in all arms. Lowest on-treatment means were calculated. Neut were significantly lower in the PEG2a/RBV arm (mean=1.09  $\times$  10 $^{9}$ /L) compared to the PEG1.5/RBV (1.15  $\times$  10 $^{9}$ /L) or the PEG1/ RBV (1.29  $\times$  10<sup>9</sup>/L) arms (P < 0.001, Wilcoxon 2-sample test). Plts were significantly lower in the PEG2a/RBV arm (130  $\times$  10<sup>9</sup>/L) compared to the PEG1.5/RBV (145  $\times$  10<sup>9</sup>/L) or the PEG1/RBV (156  $\times$  10<sup>9</sup>/L) arms (P < 0.001) and for PEG1.5/ RBV compared to PEG1/RBV (P < 0.001). Hgb concentration was significantly lower for the Peg2a/RBV and PEG1.5/RBV arms compared to the PEG1/RBV ( $P \le 0.01$ ). In the Peg2a/RBV arm, 6% of patients reached the neut DC value compared to 3% in the PEG1.5/RBV and 2% in the PEG1/RBV arms. Neutropenia appeared to be related to body weight (BW) in the PEG2a/RBV arm only; 9% in 40-65 kg BW, 6% in 75-85 kg BW, and only 3% in >105 kg BW arm had neut  $<0.50 \times$ 109/L. Similarly, Hgb <8.5 g/dL was seen in 4%, 3%, and 2% of those receiving Peg2a/RBV, PEG1.5/RBV, and PEG1/RBV, respectively, but a clear effect of BW was seen only in the Peg2a/RBV arm; 8% with BW 40-65 kg, 3% with BW 75-85, and 1% with BW>105 kg. Five patients in Peg2a/RBV had plts <25 × 109/L. Regressions for moving averages plots by arm for rates of decreased blood counts vs baseline BW demonstrated: 1) grade 3-4 neutropenia for the 3 arms diverging at <100 kg BW, with the steepest slope for the Peg2a/RBV arm; 2) for grades 2-4 anemia, both PEG/RBV arms showed a slight increase in anemia with decreasing BW, whereas there was a steep increase in anemia for the Peg2a/RBV arm below BW <90 kg, with a divergence from the other 2 arms for those with a BW of <70 kg; 3) grades 2-4 thrombocytopenia decreased with lower BW for both PEG2b/RBV arms but increased with lower BW in the Peg2a/RBV arm. Conclusions: Treatment with Peg2a/RBV causes significantly more neutropenia and thrombocytopenia than either PEG/ RBV regimen, particularly with lower BW. This may reflect the increased bone marrow exposure to interferon on a BW basis in the Peg2a/RBV regimen as well as possible inherent differences between the different peginterferon molecules. **Note:** Abstract has been updated since submission.

### Background

- Standard of care for patients with chronic hepatitis C is pegylated interferon (PEG-IFN) alfa-2b (PegIntron®; Schering-Plough) + ribavirin (RBV) or PEG-IFN alfa-2a (Pegasys®; Roche) + RBV
- With these treatments, patients infected with hepatitis C virus (HCV) genotype 1 (G1) attain sustained virologic response (SVR) rates of 42% to 46%<sup>1,2</sup>
- Although these treatments are efficacious, PEG-IFN alfa can result in bone marrow suppression that affects the 3 blood cell lines, and RBV can cause hemolytic anemia
- Hematologic side effects were assessed in the Individualized Dosing Efficacy vs Flat Dosing to Assess Optimal Pegylated Interferon Therapy (IDEAL) study
- IDEAL investigated the efficacy and safety of weight-based PEG-IFN alfa-2b + weight-based RBV and fixed PEG-IFN alfa-2a + semi-weight-based RBV in patients with chronic hepatitis C caused by HCV G1 infection<sup>3</sup>

### Aim

• To describe the hematologic safety profiles of patients in the IDEAL trial treated with PEG-IFN alfa + RBV

# **Patients and Methods**

### **Patients**

- Chronic hepatitis C, genotype 1
- Treatment naive
- Weight, 40 to 125 kg Compensated liver disease

Age, 18 to 70 years

### **Study Design**

- IDEAL was a phase 3b, randomized, parallel-arm trial conducted at 118 academic and community centers in the United States (Figure 1)
- PEG-IFN alfa-2b was administered as double-blind treatment, and PEG-IFN alfa-2a and RBV were administered as open-label treatments
- Patients had their treatment discontinued for therapeutic failure, defined as:
- <2 log<sub>10</sub> decrease from baseline in HCV RNA at treatment week (TW) 12 — ≥2 log<sub>10</sub> decrease from baseline in HCV RNA that remained detectable at TW 12 and detectable HCV RNA at TW 24

#### **Figure 1. IDEAL study design.** PEG-IFN = pegylated interferon; RBV = ribavirin.



#### • PEG-IFN alfa dose reduction was required when either of the following occurred:

- Neutrophil count was  $< 0.75 \times 10^9/L$
- Platelet count was  $<50 \times 10^9/L$
- RBV dose reduction was required when hemoglobin level was <10 g/dL</li>
- Use of erythropoietin was permitted with concurrent RBV dose reduction
- Discontinuation of PEG-IFN alfa + RBV was required when any of the following occurred:
- Neutrophil count was  $<0.5 \times 10^9/L$ — Platelet count was <25 × 10<sup>9</sup>/L
- Hemoglobin concentration was <8.5 g/dL</p>

#### Assessments

- Absolute neutrophil counts, platelet counts, and hemoglobin concentrations were assessed at baseline and at TWs 2, 4,
- 8, 12, 18, 24, 30, 36, 42, and 48/end of treatment and at follow-up weeks 4, 12, and 24
- Lowest on-treatment mean values were calculated for neutrophil counts, platelet counts, and hemoglobin concentrations Wilcoxon 2-sample tests were conducted to determine statistical significance

### Results

#### **Patient Characteristics**

• Patients (n = 3070) had similar characteristics across treatment arms (**Table 1**), including baseline blood counts

PFG-IFN alfa-2h 1 5

PFG-IFN alfa-2h 1.0

No differences in erythropoietin use were observed among the 3 treatment arms (14%-17%)

#### **Table 1. Baseline Patient Characteristics**

|                                                  | PEU-IFN alla-ZD 1.3 | PEU-IFIN AIIA-ZU 1.U | i Lu-ii N alia-Za |  |
|--------------------------------------------------|---------------------|----------------------|-------------------|--|
|                                                  | + RBV               | + RBV                | + RBV             |  |
|                                                  | n = 1019            | n = 1016             | n = 1035          |  |
| Male, %                                          | 60                  | 60                   | 59                |  |
| Race, %                                          |                     |                      |                   |  |
| Caucasian                                        | 72                  | 71                   | 71                |  |
| African American/Black                           | 18                  | 18                   | 19                |  |
| Age, y, mean (SD)                                | 47.5 (7.8)          | 47.5 (8.1)           | 47.6 (8.2)        |  |
| Weight, kg, mean (SD)                            | 84 (17)             | 83 (16)              | 83 (17)           |  |
| Baseline HCV RNA                                 |                     |                      |                   |  |
| HCV RNA, log <sub>10</sub> , mean (SD)           | 6.32 (0.69)         | 6.32 (0.70)          | 6.34 (0.64)       |  |
| HCV RNA >600,000 IU/mL, %                        | 82                  | 82                   | 82                |  |
| Steatosis, <sup>a</sup> %                        |                     |                      |                   |  |
| Absent                                           | 38                  | 35                   | 36                |  |
| Present                                          | 58                  | 61                   | 58                |  |
| METAVIR fibrosis score, <sup>a</sup> %           |                     |                      |                   |  |
| F0/1/2                                           | 85                  | 85                   | 83                |  |
| F3/4                                             | 11                  | 11                   | 11                |  |
| Mean hematologic parameters (SD)                 |                     |                      |                   |  |
| Neutrophil counts, × 10 <sup>9</sup> /L          | 3.68 (1.35)         | 3.72 (1.36)          | 3.79 (1.55)       |  |
| Platelet counts, × 10 <sup>9</sup> /L            | 229 (69)            | 228 (70)             | 228 (68)          |  |
| Hemoglobin concentration, g/dL                   | 15.0 (1.3)          | 15.0 (1.2)           | 14.9 (1.3)        |  |
| PEG-IFN = pegylated interferon; RBV = ribavirin. |                     |                      |                   |  |

#### Neutrophil Counts

**Hematologic Profiles** 

<sup>a</sup>Data were missing for 147 patients

- Mean on-treatment neutrophil counts were significantly lower in the PEG-IFN alfa-2a + RBV arm than in the PEG-IFN alfa-2b + RBV arms (P < 0.001) (**Table 2**)
- Mean on-treatment neutrophil counts were significantly lower in the PEG-IFN alfa-2b 1.5 μg/kg/wk + RBV arm than in the PEG-IFN alfa-2b 1.0  $\mu$ g/kg/wk + RBV arm (P < 0.001)

#### Table 2 Mean Nadir On-Treatment Hematologic Values of Patients Treated

|                                            | PEG-IFN alfa-2b 1.5 + RBV n = 1019 <sup>a</sup> | PEG-IFN alfa-2b 1.0 + RBV n = 1016 <sup>b</sup> | PEG-IFN alfa-2a + RBV n = 1035° | PEG-IFN alfa-2b 1.5 + RBV vs PEG-IFN 2b 1.0 + RBV | PEG-IFN alfa-2b 1.5 + RBV vs PEG-IFN 2a + RBV | PEG-IFN alfa-2a + RBV vs PEG-IFN 2b 1.0 + RBV |
|--------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------|---------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Neutrophil count, ×10 <sup>9</sup> /L (SD) | 1.15 (0.55)                                     | 1.29 (0.67)                                     | 1.09 (0.56)                     | < 0.001                                           | < 0.001                                       | < 0.001                                       |
| Platelet count, ×10 <sup>9</sup> /L (SD)   | 145 (53)                                        | 156 (57)                                        | 130 (51)                        | < 0.001                                           | < 0.001                                       | < 0.001                                       |
| Hemoglobin concentration, g/dL (SD)        | 10.9 (1.5)                                      | 11.1 (1.4)                                      | 10.9 (1.5)                      | < 0.001                                           | 0.43                                          | 0.01                                          |

### PEG-IFN = pegylated interferon; RBV = ribavirin.

On-treatment laboratory data were available for a 989 of 1019 patients, b 1001 of 1016 patients, and c 1035 patients. d Wilcoxon 2-sample test.

- Neutrophil counts <0.50 × 10<sup>9</sup>/L, requiring discontinuation from study treatment, were seen in
- 3% (28/1000) of patients receiving PEG-IFN alfa-2b 1.5 µg/kg/wk + RBV
- 2% (21/1008) of patients receiving PEG-IFN alfa-2b 1.0 μg/kg/wk + RBV
- 6% (61/1034) of patients receiving PEG-IFN alfa-2a + RBV

#### Platelet Counts

- Mean on-treatment platelet counts were significantly lower in the PEG-IFN alfa-2a + RBV arm than in the PEG-IFN alfa-2b + RBV arms (P < 0.001) (Table 2)
- Mean on-treatment platelet counts were significantly lower in the PEG-IFN alfa-2b 1.5 µg/kg/wk + RBV arm than in the PEG-IFN alfa-2b 1.0  $\mu$ g/kg/wk + RBV arm (P < 0.001)
- Platelet counts  $<25 \times 10^9$ /L, requiring discontinuation from study treatment, were seen in
- 0.5% (5/1034) of patients receiving PEG-IFN alfa-2a + RBV

#### Hemoglobin Concentrations

- Mean on-treatment hemoglobin concentrations were significantly lower in the PEG-IFN alfa-2a + RBV and PEG-IFN alfa-2b 1.5  $\mu$ g/kg/wk + RBV arms than in the PEG-IFN alfa-2b 1.0  $\mu$ g/kg/wk + RBV ( $P \le 0.01$ ) arm (**Table 2**)
- Hemoglobin concentrations <8.5 g/dL, requiring discontinuation from study treatment, were seen in</li>
- 3% (25/1000) of patients receiving PEG-IFN alfa-2b 1.5 μg/kg/wk + RBV — 2% (21/1008) of patients receiving PEG-IFN alfa-2b 1.0 μg/kg/wk + RBV
- 4% (39/1034) of patients receiving PEG-IFN alfa-2a + RBV

### **Effect of Body Weight**

#### Neutropenia

- Neutropenia was related to body weight in the PEG-IFN alfa-2a + RBV arm (Table 3)
- Patients with lower body weights had higher rates of dose reduction and discontinuation than did those with higher body weights

#### Table 3. Incidence of Neutropenia by Weight Category

| Woight              | PEG-IFN alfa-2b 1.5 + RBV $n = 1019^a$ (%) |                                 | <b>PEG-IFN</b> alfa-2b<br>n = 1016   |                                 | PEG-IFN alfa-2a + RBV<br>n = 1035° (%) |                                 |
|---------------------|--------------------------------------------|---------------------------------|--------------------------------------|---------------------------------|----------------------------------------|---------------------------------|
| Weight<br>Range, kg | DR<br>0.5-<0.75 × 10 <sup>9</sup> /L       | DC<br><0.5 × 10 <sup>9</sup> /L | DR<br>0.5-<0.75 × 10 <sup>9</sup> /L | DC<br><0.5 × 10 <sup>9</sup> /L | DR<br>0.5-<0.75 × 10 <sup>9</sup> /L   | DC<br><0.5 × 10 <sup>9</sup> /L |
| 40-65               | 37/141 (26)                                | 2/141 (1)                       | 20/138 (14)                          | 2/138 (1)                       | 40/160 (25)                            | 15/160 (9)                      |
| >65-<75             | 26/146 (18)                                | 4/146 (3)                       | 19/165 (12)                          | 4/165 (2)                       | 46/174 (26)                            | 11/174 (6)                      |
| ≥75-85              | 54/265 (20)                                | 11/265 (4)                      | 32/249 (13)                          | 5/249 (2)                       | 57/270 (21)                            | 17/270 (6)                      |
| >85-105             | 58/341 (17)                                | 6/341 (2)                       | 41/379 (11)                          | 8/379 (2)                       | 64/322 (20)                            | 15/322 (5)                      |
| >105                | 19/107 (18)                                | 5/107 (5)                       | 14/77 (18)                           | 2/77 (3)                        | 11/108 (10)                            | 3/108 (3)                       |

DC = discontinuation for neutrophil counts of  $<0.5 \times 10^9$ /L; DR = dose reduction for neutrophil counts of  $0.5 - <0.75 \times 10^9$ /L; PEG-IFN = pegylated interferon; RBV = ribavirin. On-treatment laboratory data were available for a 1000 of 1019 patients, b 1008 of 1016 patients, and c 1034 of 1035 patients.

- Grades 3-4 neutropenia (grade 3 = neutrophil count  $0.5 < 0.75 \times 10^9 / L$ ; grade 4 = neutrophil count  $< 0.5 \times 10^9 / L$ ) — Fitted regression lines along with observed moving averages plotted by arm for rates of grades 3-4 neutropenia versus baseline body weight demonstrated grades 3-4 neutropenia rates for the 3 arms diverging at <100 kg, with the steepest slope for the PEG-IFN alfa-2a + RBV arm (Figure 2)
- Pairwise comparisons of the slopes resulted in the following:
- PEG-IFN alfa-2a + RBV versus PEG-IFN alfa-2b 1.0  $\mu$ g/kg/wk + RBV was statistically significant (P = 0.003) • PEG-IFN alfa-2a + RBV versus PEG-IFN alfa-2b 1.5 μg/kg/wk + RBV was not statistically significant (P = 0.141) • PEG-IFN alfa-2b 1.5 μg/kg/wk + RBV versus PEG-IFN alfa-2b 1.0 μg/kg/wk + RBV was not statistically significant (P = 0.109)

#### Figure 2. Minimum neutrophil grades 3 and 4 by weight.



#### **Thrombocytopenia**

• Grades 2-4 thrombocytopenia (grade 2 = platelet count 50-<70 × 10 $^9$ /L; grade 3 = platelet count 25-<50 × 10 $^9$ /L; grade 4 = platelet count  $<25 \times 10^9/L$ ) decreased with lower body weight for both PEG-IFN alfa-2b + RBV arms but increased with lower body weight in the PEG-IFN alfa-2a + RBV arm (Table 4, Figure 3)

— These differences were not clinically meaningful

#### **Table 4. Incidence of Thrombocytopenia by Weight Category** PEG-IFN alfa-2b 1.0 + RBV PEG-IFN alfa-2b 1.5 + RBV

| Weight    | n = 1019 <sup>a</sup> (%)         |                                | n = 101                           | 6 <sup>b</sup> (%)             | n = 1035° (%)                     |                                |
|-----------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|
| Range, kg | DR<br>25-<50 × 10 <sup>9</sup> /L | DC<br><25 × 10 <sup>9</sup> /L | DR<br>25-<50 × 10 <sup>9</sup> /L | DC<br><25 × 10 <sup>9</sup> /L | DR<br>25-<50 × 10 <sup>9</sup> /L | DC<br><25 × 10 <sup>9</sup> /L |
| 40-65     | 1/141 (1)                         | 0/141                          | 1/136 (1)                         | 0/136                          | 4/160 (3)                         | 1/160 (1)                      |
| >65-<75   | 1/146 (1)                         | 0/146                          | 2/165 (1)                         | 0/165                          | 6/174 (3)                         | 1/174 (1)                      |
| ≥75-85    | 6/264 (2)                         | 0/264                          | 1/249 (<1)                        | 0/249                          | 5/270 (2)                         | 2/270 (1)                      |
| >85-105   | 4/340 (1)                         | 0/340                          | 4/379 (1)                         | 0/379                          | 8/322 (2)                         | 0/322                          |
| >105      | 2/107 (2)                         | 0/107                          | 2/77 (3)                          | 0/77                           | 0/108                             | 1/108 (1)                      |
|           |                                   |                                |                                   |                                |                                   |                                |

DC = discontinuation for platelet count of  $<25 \times 10^9$ /L; DR = dose reduction for platelet count of 25 to  $<50 \times 10^9$ /L; PEG-IFN = pegylated interferon; RBV = ribavirin.On-treatment laboratory data were available for a 998 of 1019 patients, b 1006 of 1016 patients, and c 1034 of 1035 patients.

#### Figure 3. Minimum platelet grades 2, 3, and 4 by weight.



Anemia was also related to body weight in the PEG-IFN alfa-2a + RBV arm (Table 5)

— Discontinuation rates were higher in patients with lower body weights Table 5. Incidence of Anemia by Weight Category

| Weight<br>Range, kg | PEG-IFN alfa-2b 1.5 + RBV $n = 1019^a$ (%) |                 | PEG-IFN alfa-2b 1.0 + RBV<br>n = 1016 <sup>b</sup> (%) |                 | PEG-IFN alfa-2a + RBV<br>n = 1035° (%) |                 |
|---------------------|--------------------------------------------|-----------------|--------------------------------------------------------|-----------------|----------------------------------------|-----------------|
|                     | DR<br>8.5-<10 g/dL                         | DC<br><8.5 g/dL | DR<br>8.5-<10 g/dL                                     | DC<br><8.5 g/dL | DR<br>8.5-<10 g/dL                     | DC<br><8.5 g/dL |
| 40-65               | 47/141 (33)                                | 1/141 (1)       | 47/138 (34)                                            | 0/138           | 67/160 (42)                            | 12/160 (8)      |
| >65-<75             | 45/146 (31)                                | 7/146 (5)       | 37/165 (22)                                            | 5/165 (3)       | 47/174 (27)                            | 12/174 (7)      |
| ≥75-85              | 78/265 (29)                                | 4/265 (2)       | 48/249 (19)                                            | 6/249 (2)       | 68/270 (25)                            | 8/270 (3)       |
| >85-105             | 84/341 (25)                                | 12/341 (4)      | 87/379 (23)                                            | 8/379 (2)       | 69/322 (21)                            | 6/322 (2)       |
| >105                | 28/107 (26)                                | 1/107 (1)       | 15/77 (19)                                             | 2/77 (3)        | 16/108 (15)                            | 1/108 (1)       |

DC = discontinuation for hemoglobin concentration of < 8.5 g/dL; DR = dose reduction for hemoglobin concentration of 8.5 to < 10 g/dL;PEG-IFN = pegylated interferon; RBV = ribavirin.

On-treatment laboratory data were available for a 1000 of 1019 patients, b 1008 of 1016 patients, and c 1034 of 1035 patients. • Grades 2-4 anemia (grade 2 = hemoglobin 8.0-<9.5 g/dL; grade 3 = hemoglobin 6.5-<8.0 g/dL; grade 4 = hemoglobin

concentration < 6.5 g/dL) — Both PEG-IFN alfa-2b + RBV arms showed slight increases in anemia with decreasing body weight (Figure 4) — A steep increase in anemia for the PEG-IFN alfa-2a + RBV arm in patients weighing <90 kg was observed, and a divergence from the PEG-IFN alfa-2b + RBV arms was observed for patients weighing <70 kg (Figure 4)

#### Figure 4. Minimum hemoglobin grades 2, 3, and 4 by weight.



### Conclusions

- Treatment with PEG-IFN alfa-2a + RBV caused significantly more neutropenia and thrombocytopenia than did either of the PEG-IFN alfa-2b + RBV regimens, particularly in patients with low body weight, though no clinically significant differences (infections or bleeding) were seen
- This observation may reflect the increased bone marrow exposure to IFN alfa based on body weight in the PEG-IFN alfa-2a + RBV arm in the lower weight groups and possible inherent differences among the different PEG-IFN alfa molecules
- Treatment with PEG-IFN alfa-2b 1.0 μg/kg/wk + RBV resulted in fewer hematologic side effects than did treatment with PEG-IFN alfa-2b 1.5 µg/kg/wk + RBV or PEG-IFN alfa-2a + RBV

### Acknowledgments

The authors thank the other IDEAL study investigators: N. Afdhal, A. Al-Osaimi, L. Balart, M. Bennett, D. Bernstein, E. Bini, M. Black, J. Bloomer, H. Bonilla, T. Box, T. Boyer, K. Brown, R. Brown, C. Bruno, W. Cassidy, R. Chung, D. Clain, J. Crippin, D. Dalke, C. Davis, G. Davis, F. Felizarta, R. Firpi-Morell, S. Flamm, J. Franco, E. Godofsky, F. Gordon, J. Gross, S. Harrison, J. Herrera, R. Herring, K.-Q. Hu, J. Israel, I. Jacobson, S. Joshi, M. Khalili, A. Kilby, P. King, A. Koch, E. Krawitt, M. Kugelmas, P. Kwo, L. Lambiase, E. Lebovics, J. Levin, R. Levine, S. Lidofsky, M. Lucey, M. Mailliard, L. Marsano, P. Martin, T. McGarrity, D. Mikolich, T. Morgan, K. Mullen, S. Munoz, D.C. Nelson, F. Nunes, A. Nyberg, S. Oh, P. Pandya, M.P. Pauly, C. Peine, R. Perillo, G. Poleynard, A. Post, J. Poulos, D. Pound, M. Rabinovitz, N. Ravendhran, J. Ready, K.R. Reddy, R. Reindollar, A. Reuben, L. Rothman, R. Rubin, V. Rustgi, M. Ryan, W. Schmidt, W. Semon, T. Sepe, K. Sherman, M. Sjogren, R. Sjogren, C. Smith, L. Stein, R. Strauss, M. Swaim, G. Szabo, J. Thurn, M. Tong, J. Vierling, G. Wu, R. Yapp, Z. Younes, A. Zaman

## References

1. Manns MP et al. Lancet. 2001:358:958-965 2. Fried MW et al. *N Engl J Med*. 2002;347:975-982. 3. McHutchison J et al. *J Viral Hepat.* 2008;15:475-481.

#### **Disclosures**

PEG-IFN alfa-2a + RBV

F. Poordad: Grant/Research Support: GlaxoSmithKline, Human Genome Sciences, Roche, Schering-Plough, Valeant, Vertex; Speaking and Teaching: Schering-Plough; Advisory Committees or Review Panels: Vertex; Consulting: Schering-Plough. N. Brau: Grant/Research Support: Schering-Merck, Novartis, Roche, Schering-Plough; Ownership Interest (eg, stocks, stock options): Bristol-Myers Squibb; Other financial benefit: Roche. M.L. Shiffman: Grant/Research Support: Biolex, Roche, Romark, Schering-Plough, Valeant, Vertex; Speaking and Teaching: Roche, Schering-Plough; Consulting: Roche; Advisory Committees or Review Panels: Schering-Plough, Vertex. J.G. McHutchison: Grant/Research Support: Abbott Pfizer, Roche, Schering-Plough, Vertex, Wyeth; Advisory Committees or Review Panels: GlaxoSmithKline, Human Genome Sciences, Novartis; Consulting: National Genetics. A.J. Muir: Grant/Research Support: GlaxoSmithKline, Human Genome Sciences, Roche, Schering-Plough, Vertex. G.W. Galler: Speaking and Teaching: Takeda; Advisory Committees or Review Panels: Schering-Plough. J. McCone: Speaking and Teaching: Roche, Schering-Plough. L.M. Nyberg: Grant/Research Support: Roche, Schering-Plough, Vertex; Speaking and Teaching: Schering-Plough. W.M. Lee: Grant/Research Support: Bayer, Bristol-Myers Squibb, Roche, Schering-Plough, Vertex; Consulting: AstraZeneca, Eli Lilly, Gilead. R.H. Ghalib: No conflict of interest. E.R. Schiff: Grant/Research Support: Abbott, Boehringer Ingelheim, Bristol-Myers Squibb, Conatus, Debioph Gilead, Globelmmune, Indenix, Labcore, Merck, Novartis, Pfizer, Roche, Salix, Sanofi Aventis, Schering-Plough, Vertex, Wyeth; Speaking and Gilead, Globelmmune, Johnson & Johnson, Merck, Novartis, Pfizer, Roche, Salix, Sanofi Aventis, Schering-Plough, Vertex, Wyeth; Consulting Dynavax. J.S. Galati: No conflict of interest. B.R. Bacon: No conflict of interest. M. Davis: Grant/Research Support: Schering-Plough. S.K. Herrine: Grant/Research Support: Human Genome Sciences, Roche, Schering-Plough; Speaking and Teaching: Roche, Schering Plough. A.L. Gibas: Grant/Research Support: Human Genome Sciences, Roche, Schering-Plough; Speaking and Teaching: Roche. B. Freilich: No conflict of interest. J.W. King: Grant/Research Support: Schering-Plough. L. Rossaro: Advisory Committees or Review Panels: Roche, Schering-Plough. P. Mukhopadhyay: Employment: Schering-Plough. S. Noviello: Employment: Schering-Plough. C.A. Brass: Employment: Schering-Plough. J.K. Albrecht: Employment: Schering-Plough. M.S. Sulkowski: Advisory Committees or Review Panels: Boehringer Ingelheim, Gilead, Human Genome Sciences, Novartis, Roche, Schering-Plough, Vertex.

Supported by Schering-Plough Research Institute